Header Ads

Life Like 3D Mini Brains Are Now Available For Drug Testing

Scientists have developed a life-like 3D mini-brain - containing all six major cell types found in normal organs including neurons and immune cells - that could help study diseases and tests new drugs.

In a study published in the journal Scientific Reports, researchers reported that their advanced 3D organoids promote the formation of a fully cell-based, natural and functional barrier - the blood-brain barrier - that mimics normal human anatomy.

The blood-brain barrier is a semipermeable membrane that separates the circulating blood from the brain, protecting it from foreign substances that could cause injury.

This development is important because the model can help to further understanding of disease mechanisms at the blood-brain barrier, the passage of drugs through the barrier, and the effects of drugs once they cross the barrier.

"The shortage of effective therapies and low success rate of investigational drugs are due in part because we do not have a human-like tissue model for testing," said Anthony Atala, director of Wake Forest Institute for Regenerative Medicine (WFIRM) in the US.

"The development of tissue engineered 3D brain tissue equivalents such as these can help advance the science toward better treatments and improve patients' lives," said Atala.

The development of the model opens the door to speedier drug discovery and screening, both for neurological conditions and for diseases like HIV where pathogens hide in the brain and avoid current treatments that cannot cross the blood-brain barrier.

It may also allow for disease modelling of neurological conditions such as Alzheimer's disease, multiple sclerosis and Parkinson's disease so that researchers can better understand their pathways and progression.

Thus far the researchers have used the brain organoids to mimic strokes in order to measure impairment of the blood-brain barrier and have successfully tested the model's permeability with large and small molecules.

"Using an engineered tissue model provides a platform that can be used to understand the fundamental principles at play with the blood-brain barrier and its function, as well as the effects of chemical substances that cross it," said Goodwell Nzou, a PhD candidate at WFIRM.
Powered by Blogger.